MCLA Professor's Research Featured in Top 10 Physics Breakthroughs of 2023

Print Story | Email Story
NORTH ADAMS, Mass. — MCLA Physics Professor Dr. Emily Maher, one of 65 scientists in the MINERvA collaboration at Fermi National Accelerator Lab (Fermilab), has published work that has been chosen as one of the Top 10 Physics Breakthroughs of 2023 in Physics World.  
 
Over a 10-year span, the MINERvA detector recorded the interactions of neutrinos and antineutrinos, the antimatter partners of the neutrino. The physicists working on the MINERvA experiment used the data to make a ground-breaking new measurement which was published last February in Nature titled "Measurement of the axial vector form factor from antineutrino–proton scattering." 
 
"We work to uncover and understand nature's smallest building blocks," said Dr. Maher. "I am repeatedly amazed at how we use particle accelerators that span miles to shoot invisible particles at multi-story detectors to "see" something as small as a proton. No human has even been able to make this measurement before, and I am delighted that this science is not merely interesting to specialists in my field but also recognized by the larger world as a real contribution." 
 
To be featured on the list of physics breakthroughs, research must have been published within the last year, have significant advances in knowledge or understanding, and show the importance of work for scientific progress and/or development of real-world applications.  
 
The study, led by Tejin Cai at the University of Rochester in the US and Canada's York University, shows how information about the internal structure of a proton can be gleaned from neutrinos scattering from a plastic target. The team focused on isolating the signal from neutrinos scattered off lone protons within the background of those scattered off protons bound in carbon nuclei. Their approach involved simulating and subtracting the carbon-scattered signal from experimental data. This provides insights into proton structure and enhances the understanding of how neutrinos interact with matter. 
 
Dr. Maher has spent more than 20 years studying neutrinos. She began her work at Fermilab in 2000, studying the tau neutrino for her thesis work. This experiment – DONuT (Direct Observation of Nu Tau) – made the world's first direct observation of the tau neutrino. Maher said she enjoys studying neutrinos because "neutrinos continually surprise us and point us to new physics."  

Tags: MCLA,   

If you would like to contribute information on this article, contact us at info@iberkshires.com.

North Adams Warns Residents of Lead Pipe Survey Scam

NORTH ADAMS, Mass. — The City of North Adams is warning residents about scammers exploiting a city-run lead pipe survey project.

As mentioned in a letter sent to city residents, the city is undergoing a lead pipe survey. Since then, some residents have been contacted by scammers claiming to be part of the survey and looking for financial information.

Officials emphasized that the survey is free, and the city is not making phone calls to residents at this time. 

Residents are urged not to share financial details over the phone. Anyone receiving such calls should report the incident immediately to the North Adams Police Department at 413-664-4944, extension 1.

 
View Full Story

More North Adams Stories